
Software Engineering

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario



Software Engineering

• Writing small programs is easy.

• Writing big programs is hard.

• This sounds trivial, but therein lies a deeper truth.



Software Engineering

• Why are bigger programs harder to work with
than smaller programs?

• There are at least two reasons:

1. The problems they are trying to solve are inherently
more difficult and more complex.

2. They have more interacting parts.



Interactions Among Parts
• 1 part => no interactions

• 2 parts => 1 pair-wise interaction

• 3 parts => 3 2-way interactions, 
1 3-way interaction

• 4 parts => 6 2-way interactions, 
4 3-way interactions
1 4-way interaction.

• 100 parts => 4950         2-way interactions
161,700     3 -way interactions
3,921,225  4-way interactions

...
• 1000 parts => 499,500             2-way interactions

166,167,000      3-way interactions
41,416,124,750 4-way interactions
...

• n parts => n × (n-1)/2  2-way interactions
2^n –(n+1)  interactions all together.



Interaction Among Parts

• This growth in possible number of interactions 
among parts leads to:

1. New emergent phenomena at each level of
program size.

Different  concerns arise in programs with 100 n lines that 
do not exist in programs of with n lines.   This is true for all n.

2. One of the most important considerations in
software design becomes limiting the interaction
among parts.



Smart Choice of Parts

• One of the most important aspects of software design
is in deciding what the parts of a program will be.

• This is problem decomposition.

• A good choice of parts will provide 
– re-usable components, with

– well-defined interfaces that

– allow parts to be composed flexibly and

– stylize the interaction among parts 

• Think Lego bricks, not Swiss army knives. 



What are the Parts?

• Depends on the programming environment
and the granularity.

• Lines of code.

• Methods or functions.

• Classes or modules.

• Packages.

• Application suites.

• Computer systems.

• Networks.

• Planetary infrastructures.



Software Engineering

• Software Engineering is the body of knowledge and
practice of managing the life-cycle of software.

• It focuses on how teams of people can
design, build, test, deploy and maintain 
software modules.



Top-Down vs  Bottom-Up vs  Middle-Out

• There are various ways to design software, 
each with its own adherents.

• Top-down software design is based on 
successive refinement of ideas. 

• Bottom-up software design is based on 
crafting basic modules and 
successively abstracting interfaces.

• Middle-out software design is based on
starting in the middle and doing both.

(Until you have a lot more experience top-down is the best.)



What  Does Wikipedia Say?
• Top-down and bottom-up are strategies of information processing and 

knowledge ordering, mostly involving software, and by extension other 
humanistic and scientific system theories (see systemics).

• In a top-down approach an overview of the system is first formulated, 
specifying but not detailing any first-level subsystems. Each subsystem 
is then refined in yet greater detail, sometimes in many additional 
subsystem levels, until the entire specification is reduced to base elements.
A top-down model is often specified with the assistance of "black boxes" 
that make it easier to manipulate. However, black boxes may fail to 
elucidate elementary mechanisms or be detailed enough to realistically 
validate the model.

• In a bottom-up approach the individual base elements of the system are 
first specified in great detail. These elements are then linked together to 
form larger subsystems, which then in turn are linked, sometimes in many 
levels, until a complete top-level system is formed. This strategy often 
resembles a "seed" model, whereby the beginnings are small, but eventually 
grow in complexity and completeness. However, "organic strategies", may 
result in a tangle of elements and subsystems, developed in isolation, and 
subject to local optimization as opposed to meeting a global purpose.



Example of Top-Down Design

• Write a program to verify that a 9 x 9 grid is a 
Sudoku solution.

• Each row and column and 
3x3 square (indicated by heavy lines)
must have each of the digits 1-9.

• Because each row, column and 3x3
square have exactly 9 places, this
implies that each digit appears exactly
once in each of them.


